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Abstract—We present a causal reinforcement learning proto-
type to optimize marketing promotion in the context of out-of-
app (OOA) messaging. To do this, we develop a deep Q network
(DQN) to model the customer journey. We train the agent via
a reward system that utilizes outputs from a Bayesian media
mix model (MMM) and a causal uplift model. Using cause-
effect relationships, we demonstrate its ability to learn targeted
marketing interventions that capitalize on these relationships
rather than spurious correlations. We further demonstrate this
capability in the context of a bakery that releases a mobile
application to increase customer loyalty by increasing purchase
behavior through personalized out-of-app messaging.

Index Terms—Control, Marketing, Optimization, RL, Causal
Inference

I. INTRODUCTION

Within the business world, there are distinct departments
that perform specific operations for a given company. The
marketing department of a company is generally in charge
of positioning the company through marketing activities to
appeal to target customers to increase company profits. These
marketing activities can be siloed into four categories: prod-
uct, place, price, and promotion. These four categories are
commonly known as the ”4 P’s of marketing” as they en-
compass the key responsibilities marketing has to make the
company successful. Essentially, a marketing department of a
company is tasked with optimizing customer experience such
that a given targeted customer is satisfied with the company’s
product, knows where the product is located, is willing to pay
the price, and is reasonably receptive to the promotion of said
company/product.

In order to achieve this optimal customer experience, many
marketing departments have adopted data tracking and analyti-
cal methods to verify if their company’s strategy is generating
success [1]. Thus, the world of marketing has been a great
area of research and application for real-world applications
of methods within supervised and unsupervised learning [2].
Marketers are constantly trying to identify what to send and
to whom will they send marketing campaigns. This is known
as targeted campaign marketing. With the abundance of data
now available to marketing departments and the continual
evolution of optimization techniques, marketing departments
can optimally send messaging to customers at the right time
using the right message to achieve their business goals.

One of the critical areas of research for marketing depart-
ments is how to make decisions under uncertainty. In other
domains such as engineering, these are commonly known as
control models, where a system is managed by a controller that
is used to adjust the system to operate optimally. In business

settings such as marketing, a control model can be applied
in a similar way. For example, businesses that utilize mobile
applications as a channel of commerce, one effective method
to increase specific business metrics (e.g., engagement) is to
utilize out-of-app (OOA) messaging. By viewing this as a
a control problem, marketing teams can strategically decide
when, what, and how to send OOA messages to app users,
aiming to maximize their engagement and foster stronger
loyalty.

In this paper, we propose an innovative system that utilizes
control methodologies. Specifically, we model this problem
as a control problem, where the system to be optimized is
OOA messaging. To control the system, we design a controller
to understand system behavior using media mix models and
utilize reinforcement learning to find optimal decisions to feed
to the system. We demonstrate this system using a toy example
of a fictitious baker to illustrate the robustness of the system.

II. RELATED WORK

A. Background on Reinforcement Learning
Reinforcement learning (RL) aims to find an optimal policy

(strategy) for an autonomous agent to maximize some reward
over time. In general, reinforcement learning can be catego-
rized into two groups: model-based and model-free reinforce-
ment learning [4]. Model-based reinforcement learning deals
with an agent making decisions based on an inferred model
of the environment. Model-free reinforcement learning deals
with an agent that interacts with an environment and optimizes
from those actions.

Model-based RL can be traced back to the birth of dynamic
programming with Richard Bellman [3]. Bellman proposed the
theory that we can find the optimal solution to a big problem
by finding the optimal solutions to local/smaller problems and
aggregating these solutions back to the original problem. Thus,
in the context of RL, the optimal decision-making strategy
for an agent can be broken down into smaller decisions, then
aggregated back to the original policy decision. Specifically,
Bellman derived the following equation.

V ∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γV ∗(s′)] (1)

(1) states that we can find the optimal value of our current
state by finding the maximum expected return over all possible
actions to next states and their respective rewards. Thus, an
agent in a model-based RL framework uses states, actions,
and rewards to model their optimal path. The most common
framework for this is a Markov Decision Process (MDP) [5].



A MDP is a framework for decision making that incorpo-
rates stochasticity into the process. A MDP consists of states
that are connected by actions, each with defined transition
probabilities, as shown in Figure 1. Thus, as shown so far
with model-based RL, one must know the states, actions, and
transition probabilities in order to have a valid model. This
allows the agent to plan ahead once the model of the system
is discovered, whereby the agent can maximize rewards by
following the optimal policy inferred by the model.

Fig. 1. Example Markov Decision Process

However, there are many cases where this is not feasible.
One possibility could be that the state space is just too large
to compute all value functions for all possible states. Another
possibility is that we don’t know the underlying dynamics
of the environment, making it hard or even impossible to
model the transition probabilities or reward structure of the
environment. This is where we can extend the framework of
MDPs from a model-based sequential decision process to a
model-free decision process.

Model-free RL algorithms still attempt to learn an optimal
policy to maximize rewards in their respective environment,
but what makes them different from model-based algorithms
is that they don’t attempt to model the transition probabilities
nor the reward functions. Thus, the difference lies in the
implemented strategy. Model-based RL attempts to learn the
underlying model of the environment to maximize rewards,
whereas model-free RL enables the agent to learn directly from
experiencing the environment.

One of the biggest advancements in model-free RL came
with Temporal Difference Learning (commonly known as TD
learning) [6]. TD learning optimizes the value functions for a
given state (as is the goal in model-based learning) but does
not attempt to model the transition probabilities nor the reward
function. Instead, TD learning attempts to optimize the value
function by updating its estimate based on the observed reward
and the estimated value of the subsequent state. Additionally,
the hyperparameter α adjusts the step size of each update,
which determines how granular the system will learn, as shown
in (2).

V (St) = V (St) + α[Rt+1 + γV (St+1)− V (St)] (2)

TD learning heavily influenced one of the most popular RL
algorithms, Q-learning [6]. Q-learning uses TD learning to
optimize the quality function, Q(s, a). The quality function
is a way of viewing the ”quality” of the state (the expected
rewards) via a specific action. By using TD learning, we
can optimize the quality function in the same way that we
optimized the value function. (3) shows the full formula.

Q(s, a) = Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(3)

Like TD learning, Q-learning interacts with the environment
and updates each Q function states by iteratively converging
to the action that maximizes the rewards.

Even with a model-free approach like Q-learning, values
for each state-action tuple can grow quickly for large state-
action spaces. To handle these situations, many have adopted
approximation functions. One popular method for approximat-
ing these functions is utilizing neural networks. In the example
of Q-learning, we would utilize a neural network with states
as inputs and the output would be an approximation of the
Q-value function Q(s, a; θ) [16].

In summary, model-based methods attempt to learn the
underlying model of the environment in order to derive the
optimal policy to maximize rewards. Model-free methods
attempt to learn the policy that maximizes rewards by directly
experimenting with the environment. Model-based methods
tend to be more sample efficient but do not perform as well
in complex and large state-space environments. In contrast, a
model-free method requires more data to properly understand
the environment but can handle complex and large state-
space environments better [7]. Lastly, in the case where
neither model-based nor model-free methods can handle the
complexity of the state-action space, we can approximate these
functions using things like neural networks.

B. Bayesian Media Mix Models

Marketing departments, like financial portfolios, generally
strive to have a diverse pool of channels that they perform
promotions. The question in the sense of optimization is
which channels give the best return on investment (ROI). To
determine this, businesses utilize media mix models (MMM)
to assess optimal ROI channels [8]. The formal definition of
this model is found in (4).

y = β0 +

n∑
i=1

βi ·

(
t∑

t′=0

θiλ
t′

i xi,t−t′

)
+ ϵ (4)

In the equation, y is the marketing outcome (e.g. revenue),
β0 is the baseline outcome, βi represents each channel impact
on y. The adstock (saturation) effect is represented by θi and
the carryover effect is represented by λi for each respective
channel. The model is essentially a regression model that is
modified to take into account the diminishing returns for ad
spend in a marketing channel (i.e. saturation) and the potential
carryover effect from these channels.



One of the more popular methods in marketing is to utilize
Bayesian MMM [9]. In the Bayesian paradigm, we utilize prior
information to inform our models before experimentation takes
place. Then, as we proceed through the process of marketing
operations, we update our priors based on the data we observed
to obtain our posterior. This then becomes our prior and we
continue the process of updating our beliefs based on data we
observe.

In the context of optimizing marketing spend, Bayesian
MMM essentially aims to understand the incremental impact
of changing spend in different activities. Thus, Bayesian
MMM utilizes prior information about different channels and
other environmental factors to calculate metrics like return on
ad spend (ROAS). This allows marketers to find the optimal
ad spend areas using this technique.

C. Causal Uplift Models
Although MMM are good at comparing ROI across chan-

nels, they do not show why these channels provide good ROI.
In order to identify the levers that businesses can pull in
order to change ROI, we need to utilize causal models. Causal
inference helps us to identify which marketing treatments
actually produce cause-and-effect relationships.

A prominent use of causal inference in marketing is to
determine how customers will react to promotions. Usually,
a marketing department aims to identify four personas: lost
causes (customers whose purchase behavior is unlikely to
change due to a promotion), do-not-disturbs (customers who
already have high propensity to purchase and would possibly
react negatively to a promotion), persuadables (customers
whose likelihood of purchase significantly increases due to
a promotion), and sure things (customers who are likely to
purchase and are not affected by a promotion). These personas
are generally illustrated in a 2x2 grid as shown in Figure 2. In
marketing, identifying how these treatments create cause-effect
relationships is commonly known as uplift modeling [10].

Fig. 2. 2x2 grid illustrating uplift modeling personas

Uplift modeling helps marketing organizations to better
understand how to position their promotion strategy such that

they optimize promotion spend on those who would be most
likely to convert due to a promotion (treatment). The more
formal mathematical definition can be found in (5).

τ(xi) = E[Yi(1)− Yi(0)|Xi = xi] (5)

(5) essentially states that we can measure the causal impact
of our treatment by measuring the difference in outcomes be-
tween those who were treated (i.e., received a promotion) and
those who were not treated, conditioning on the feature vector
x. This difference is commonly known as the conditional
average treatment effect (CATE). This result only holds barring
that the model follows all assumptions for causal association
[10].

A prominent method of estimating CATE is using ”meta-
learners” [17]. Meta-learner models utilize a base model that
uses common machine learning algorithms to estimate the
outcomes for treated and non-treated users, then uses a meta-
learner model on top of the base model to calculate a function
that ”explains” the difference in the predictions for treated vs
untreated users. In this paper, we focus on the two-model (T
regressor model) approach where we train two separate base
models (one for treated, one for non-treated) and utilize (5) to
estimate the uplift.

III. IMPLEMENTATIONS

Many companies have utilized control methods to optimize
operations. For example, Spotify used RL techniques to pro-
vide explainable recommendations to users while also pro-
viding recommendations that were ”optimized” for selection
[12]. Additionally, Adobe utilized RL methods to optimize
personalized ad recommendations to maximize customer life
time value [13].

Specifically, in the world of OOA messaging, Uber de-
veloped their own architecture to better personalize their
Eats marketplace [14]. Additionally, Duolingo utilized bandit
algorithms to increase user engagement via push notifications
[15].

These are only a few examples within industry that have
utilized control methodologies to optimize an operation. Many
other algorithms are proprietary to their respective companies.
Needless to say, many business problems can be organized
into control problems.

IV. PROBLEM FORMULATION

We introduce in this section our toy example. We aim to
help a thriving baked goods company, ”Baked by Brandon.”
”Baked by Brandon” owns one bakery in a metropolitan area
and has seen great success over the past couple of years. To
help increase customer loyalty and provide ease of purchase
for customers, ”Baked by Brandon” has adopted the use of
technology by creating a mobile phone app. The app allows
customers to order ahead so that they can come pick up their
order whenever convenient for them.

”Baked by Brandon” hopes to utilize the app as a new touch
point with customers to increase customer loyalty. Specifically,
more loyal customers tend to purchase more often and have



larger average ticket sizes. They plan on using the app to
drive this loyalty by optimizing out-of-app messaging via
three marketing channels (push notification, email, and text
message) with three distinct promotions (ad, small discount,
large discount).

In essence, the task at hand is to model the sequential
transactions of customers such that we can identify what the
next best marketing action would be for each customer. By
training a model to identify this, we can better personalize
our marketing efforts to utilize campaigns (or not utilize
campaigns) on specific customers that would have the best
reaction to them.

V. METHODOLOGY

To tackle the problem of modeling sequential transactions of
customers for ”Baked by Brandon,” we first frame the problem
utilizing control theory. From this perspective, we identify two
core components: the system to be optimized/controlled and
the controller of the system. The system to be optimized is the
OOA messaging system. Our controller needs to be designed
in such a way that aligns system performance/behavior with
desired business outcomes. In our case, the business outcomes
can be boiled down to three key strategies: increase purchase
behavior of customers, convert customers into higher loyalty
tiers (or retain them in the highest tier), and not cause
annoyance that would drive customers to lower tiers (decrease
purchase behavior).

A. Data Generation

Since real world data of this scale and nature are incredibly
difficult to find, we used Python to generate synthetic data
for these modeling purposes. We generated three separate
datasets for different purposes of the modeling process. First,
we generate synthetic data showing the effects of ad spend
via our three marketing channels (push notifications, text, and
email). This data is used to model the media mix of our
company to help identify which channel is most ”effective”
(i.e., has the highest ROI).

Second, we generate synthetic data showing the causal
effects of marketing treatments on customers. These data
are used to model the uplift of customers to help identify
how different demographics of customers react to marketing
treatments.

Third, we generate synthetic data showing the sequential
transactions of customers. This data utilizes logic from the
previous two models to show how customer behavior changed
due to marketing interventions and will be used to train a deep
q network (DQN) model. The code for these data generation
functions and respective models can be found here.

B. Controller Design

We aim to design a controller that utilizes important output
information from our system. Specifically, we strive to utilize
causal methodologies to train our agent to perform actions
that have true cause-effect relationships. Identifying causal
relationships is important in business to identify what levers

we can pull to change customer behavior. Therefore, we
propose designing a prototype causal controller that utilizes
information from our Bayesian media mix model and causal
uplift model. The output of these models inform the reward
design of our DQN model so that it better aligns its actions
with causal inference rather than correlation-based inference.

C. MMM and Uplift Model
We utilized a Bayesian Media Mix Model to identify

marketing channel ROI. In our model, we incorporated both
saturation and carryover effects by modeling saturation with
a Hill function and carryover with geometric decay. Priors
for a and b in the saturation function were Gamma(3, 2) and
Beta(2, 2). Our β prior was Normal(5, 3) with σ prior being
HalfNormal(1). For the carryover function, we used a prior
of Beta(2, 2). The model was implemented using numpyro in
Python.

For our uplift model, we used a T regressor model to esti-
mate the causal impact of our treatments. We used XGBoost
as the underlying predictive model in our T regressor. We
implemented the T regressor using the causalml package in
Python along with the xgboost library.

D. DQN Model
We implemented a DQN to implement our next-best action

model. We set up the model using PyTorch by inheriting
the nn.Module class to define our DQN. We used three fully
connected layers with input layer having the size of our state
space, followed by an intermediate layer with 24 neurons,
followed by the output layer with size of our action space.

We then defined our agent class. The agent has methods
of remember, act, and replay. Our agent also contains the
hyperparameters of γ = .95, ϵ = 1, ϵ decay = .995, and min(ϵ)
= .01. To train our agent, we use a batch size of 50 with 10
episodes.

The reward function is designed with the ultimate goal
of driving customers to higher loyalty tiers. In order for
customers to transition to higher tiers, they need to make a
purchase. So, the long-term strategy of the agent is to maintain
high levels of loyalty (i.e., retain gold-tier customers) while
continuing to drive lower-tier customers to make a purchase
such that they have a non-zero probability to transition to a
higher loyalty tier. To do this, the base reward for the agent
is the ticket size produced by a customer. Additionally, if the
agent provoked a purchase by a customer via a marketing
action, the additional reward is the uplift provided by the
purchase. Furthermore, if the customer in the next state is
at a higher tier than previously, the agent receives a large
reward. If the customer is already a gold-tier customer and the
agent retains the customer in the gold tier, the agent receives
a large reward. If the customer does not make a purchase
and subsequently drops in tier, the agent receives a negative
reward.

VI. RESULTS

Due to the synthetic nature of our data, the main purpose of
our modeling was to see the effects of causal model outputs in

https://github.com/thebayesianbandit/thebayesianbandit.github.io/blob/main/code_books/proj_code.ipynb


designing the reward function for our agent. It suffices to say
that our Bayesian MMM and Causal uplift model identified
correctly the underlying functions we used to create the data.
Therefore, we focus this section on the output/results of our
DQN model.

We used a dataset that consisted of 500 customers each with
50 steps of time, totaling in 25000 observations, with 40%
no tier, 30% bronze tier, 20% silver tier, and 10% gold tier.
There were eight state attributes (age, gender, distance to store,
time step, and booleans for each loyalty tier) and 10 actions
(none, ad-push, small discount-push, large discount-push, and
the same combinations for text and email channels). We used
a batch size of 50 with 10 episodes of training.

After training our agent, we designed a function that sim-
ulated the agent being deployed to production where each
customer time step would be influenced by the agent. Our
test data included 500 users each with 1 time step. The 500
users were segmented into the same loyalty tiers as before,
with 40% no-tier, 30% bronze-tier, 20% silver-tier and 10%
gold-tier. We ran the model such that each user generated 50
steps with agent influence.

At the end of the 50 step simulation, 99% of users ended up
as gold tier customers, demonstrating that our agent discov-
ered an optimal policy utilizing our causal logic to improve
customer loyalty. However, the agent continued to send mar-
keting actions more frequently than desired to our gold-tier
customers, despite their higher propensity and lower uplift.
This suggests that while the agent is currently well-trained to
enhance customer loyalty, it has not yet discovered the most
optimal policy in creating and retaining loyal customers (see
Table I).

TABLE I
SAMPLE OF AGENT DECISIONS FOR USER #2

Time Step Loyalty Tier Marketing Action Ticket Size

7 Gold None $7.76
8 Gold None $7.15
9 Gold Large Discount - Push $7.83
10 Gold Large Discount - Push $8.02
11 Gold Ad - Text $4.86

The next steps to improve our model begin with the syn-
thetic data logic. Currently, the transition probability between
tiers is very simple and could be enhanced with different time-
sensitive and over-exposure features. Additionally, our model
was trained on a relatively small dataset for the task. By
increasing the dataset size the agent should be able to general-
ize better when faced with more complex logic. Furthermore,
we did not perform any hyperparameter tuning for the agent
so ensuring we find optimal training hyperparameters for the
agent would be beneficial. Finally, if we were to release this
agent to production use we would need to determine the proper
feedback update loop. Due to the static nature of the data, we
don’t have any timeline on when to update our causal models
and subsequently update our reward logic. To create a robust
system, we would need to identify the best update logic for

our feedback loop in order to keep the agent up-to-date with
current customer behavior without overburdening our systems
with too many updates.
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